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Development of Obstacle Avoidance Autonomous Mobile Robot

Using Deep Reinforcement Learning (DQN) th ROS

Sirinart Hansuwan!, Kiattisak Sritrakulchai?

Abstract

Currently, mobile robots using wheels, and automated operating systems are
widely used in many industrial applications to support human operator. However, there
is still lack of flexibility when the environment changes. For example, when a robot
moves forward with changing obstacles or the destination position has changed. This
causing the existing automation system has to be updated to comply with its usage, that
requires a lot of cost and time. Accordingly, this research aims to solve the problem of
mobile robot using wheels can avoid obstacles by deep reinforcement learning. We have
developed the obstacle avoidance system by using deep reinforcement learning (Deep
Q-Network), it is a type of reinforcement learning. ROS (Robot Operating System) is an
important component of building robotic control systems. In addition, the learning
system will be created in simulation environment model. In order to find the suitable
parameter for decision making of robot control system, before applying to real robots.

Keywords: Mobile robot / Obstacle avoidance / DQN / Deep reinforcement learning

Background and problem statement

Today, artificial intelligence (Al) continues to be a subject of study to provide
machines with learning abilities. It is important to understand the nature of learning in
order to achieve the goal of intelligent machines. Although there is a great number of

algorithms that were developed as supervised and unsupervised learning methods in the
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ML field, the fundamental idea of reinforcement learning (RL) usage is that of learning
from interaction, in order to obtain interaction ability. Reinforcement learning-based
mobile robot navigation.

In the recent years, research and industrial interests are focused on developing
smart machines such as robots that are able to work under certain conditions for a very
long time and without any human intervention. This includes doing specific tasks in
hazardous and hostile environments. The mobile robot should be able to move along
the path from a given starting point to the target point in a complicated dynamic
environment and conduct real-time local trajectory planning to avoid obstacles when
encountering dynamic obstacles. But if the robot acquires local environmental
information by relying on sensors with limited perception when there is no prior
information in the dynamic environment, inaccuracy will be inevitably caused to the
environmental map model established. Local trajectory planning depending on uncertain
environmental model will certainly result in uncertainty of transmissibility.

This research aims to solve the obstacle avoidance problem using Deep
Reinforcement Learning. In previous work, various mathematical models have been
developed to plan collision-free paths for such robots. In contrast, our method enables
the robot to learn by itself from its experiences, and then fit a mathematical model by
updating the parameters of a neural network. The derived mathematical model is
capable of choosing an action directly according to the input sensor data (from LiDAR)
for the mobile robot. In this research, we develop an obstacle avoidance framework
based on deep reinforcement learning. The essential components of robots are
programmed under a ROS system. A 3D simulator (Gazebo) is designed to provide the
training and testing environments, in order to solve the problem of control for the robot’s

intelligent decisions in a complicated dynamic environment.
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Objective of research
To develop an autonomous mobile robot obstacle avoidance system using ROS

and deep reinforcement learning.

Theory and algorithms of Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning that is inspired by
psychological and neuroscientific perspectives on animal behavior. It is the problem of
getting an agent to act in an environment in such a way as to maximize its rewards, by
predicting the long-term impact of its actions.

Much of reinforcement learning research stems from Markov decision processes,
which are a low-level approach to representing stochastic environments. A Markov
decision process consists of states, and transitions between those states. Actions that an
agent is able to take are often represented as transitions. One point of note is that an
action is not guaranteed to result in a particular state: instead, there are multiple possible
states that may follow an action, characterized by a probability distribution. This accounts
for partial observability and stochastic factors which may be impossible to predict
accurately. We will not delve on a formal definition of Markov processes, as it is not used
directly in this research. But it is important to note that they serve as a foundation for
much of the theory behind machine learning.

Most reinforcement learning algorithms share a basic common structure:

1. Observe the environment.
2. Perform an action based on observation.
3. Observe a scalar reward/punishment signal.

4. Modify its behavior in light of the new knowledge.

Elements of Reinforcement Learning

Reinforcement learning can be understood using the concepts_e

environments, states, actions and rewards, all of which are explaing
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that shown a Markov decision process. Capital letters tend to denote sets of things, and
lower-case letters denote a specific instance of that thing; e.g. A is all possible actions,

while a is a specific action contained in the set (Abdullah, 2018).

| Agent ||
state reward action
S, R, A,

- Rt+| (
~S,.. | Environment ]4—

Figsure 1 The agent environment interaction in a Markov decision process.

Note. From Reinforcement learning (p. 48), by Richard S. Sutton and Andrew G Barto, 2018

Agent: An agent takes actions; for example, a drone making a delivery, or Super
Mario navigating a video game. The algorithm is the agent. It may be helpful to consider
that in life, the agent is you.

Action (A): A is the set of all possible moves the agent can make. An action is
almost self-explanatory, but it should be noted that agents usually choose from a list of
discrete, possible actions.

Discount factor: The discount factor is multiplied by future rewards as discovered
by the agent in order to dampen these rewards’ effect on the agent’s choice of action.
Often expressed with the lower-case Greek letter gamma: Y. If Y is .8, and there’s a
reward of 10 points after 3 time steps, the present value of that reward is 0.8% x 10. A
discount factor of 1 would make future rewards worth just as much as immediate rewards.
We’re fighting against delayed gratification here.

Environment: The world through which the agent moves, and which responds to
the agent. The environment takes the agent’s current state and action as inp<and

returns as output the agent’s reward and its next state.
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State (S): A state is a concrete and immediate situation in which the agent finds
itself; i.e. a specific place and moment, an instantaneous configuration that puts the agent
in relation to other significant things such as tools, obstacles, enemies or prizes. It can
the current situation returned by the environment, or any future situation.

Reward (R): A reward is the feedback by which we measure the success or failure
of an agent’s actions in a given state. Rewards can be immediate or delayed. They
effectively evaluate the agent’s action.

Policy (TT): The policy is the strategy that the agent employs to determine the
next action based on the current state. It maps states to actions, the actions that promise
the highest reward.

Value (V): The expected long-term return with discount, as opposed to the short-
term reward R. VIT(s) is defined as the expected long-term return of the current state
under policy TT. We discount rewards, or lower their estimated value, the further into the
future they occur.

Q-value or action-value (Q): Q-value is similar to Value, except that it takes an
extra parameter, the current action a. Qn(s, a) refers to the long-term return of an action
taking action a under policy TU from the current state s. Q maps state-action pairs to
rewards. Note the difference between Q and policy.

The agent and environment interact at each of a sequence of discrete time steps,

t=0,123,.. teach time step t, the agent receives some representation of

the environment’s state,

S; € S, and on that basis selects an action, A; € A s). One-time step later, in part
as a consequence of its action, the agent receives a numerical reward, R; +1 € R R,
and finds itself in a new state, Si+1. The MDP and agent together thereby give rise to a

sequence or trajectory that begins like this:
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SO; AO; Rl; SllAl; RZ; 52; AZ: RB;-'-
attimestept=1, 2, 3,...;
[ St; At; RHZ s 5t+1 s At+1 s Rt+2 ’ 5l‘+2 s At+2 ’ Rt+3 geee

Q-Learning

Q is the value of every possible state we can arrive at by performing an available
action. If we know the value of the state succeeding each action, we can determine the
optimal action to take by choosing the one that results in the highest value. Traditional
Q-Learning is based on storing a table that maps state-action pairs to an expected value
for that action. This table represents Q, and is updated iteratively using the following

assignment rule that presented in figure 2, the same as equation of figure 3.
At terminal state; Q(s,a) = r

At non-terminal state;

learngt\'alue
Qoo (1-a) Qo)+ @ (4 5 ¢ mxQene) )
. ‘-v-‘" . — a
earning rate W i Se——
Rl smine & rewnrd  discount factor estimate of optimal future value

Figure 2 Q-Learning update rule

Note. From https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html

or NewQ(s,a) = Q(s,a)+a[R(s,a) + ymax Q'(s, ') = Q(s,a)]
= —— - —

HEg value for that state and Reward for taking
that action Maximum expacted ard given the

thataction at that uture reward g
state new s* and all possible actions at that new

Current
value

Learning fate Discount

Figure 3 Equation of Q-Learning update rule
Note. From https://medium.com/mindboard/g-matrix-update-to-train-deep-recurrent-g-

network-more-effectively-de616e7c72fa
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The process of Q-Learning creates an exact matrix for the working agent which it
can “referto” to maximize its reward in the long run. Although this approach is not wrong
in itself, this is only practical for very small environments and quickly loses its feasibility
when the number of states and actions in the environment increases.

The solution for the above problem comes from the realization that the values
in the matrix only have relative importance i.e. the values only have importance with
respect to the other values. Thus, this thinking leads us to Deep Q-Learning which uses
a deep neural network to approximate the values. This approximation of values does not
hurt as long as the relative importance is preserved.

The basic working step for Deep Q-Learning is that the initial state is fed into the
neural network and it returns the Q-value of all possible actions as on output (Gupta,
2019).

One modification to the algorithm is that a simplified update rule is used:

QW(St: a‘t) — Qﬂ-[:st: a’t) + Y mfow(St-l-h {1)

Robotic Operating System (ROS)

The Robot Operating System (ROS) is not an actual operating system, but a
framework and set of tools that provide functionality of an operating system on a
heterogeneous computer cluster. Its usefulness is not limited to robots, but the majority
of tools provided are focused on working with peripheral hardware (Ademovic, n.d.)

For ROS's working, consists of a master section, a primary node that controls all
other nodes in the system, such as registering to publisher node, subscriber node, as
figure 4, which works in this way, can be said to be peer to peer, namely, each node
communicates with each node, it can send message to each other using the TCP/IP
protocol. The Master's function is not involved in communicating between nodes(, but

only as coordinators, namely the storage of communication-related informatie
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Figure 4 ROS communication structure
Note. From https://trojrobert.github.io/hands-on-introdution-to-robot-operating-

system(ros)/

Simulation: Gazebo

Robot simulation is an essential tool in every roboticist's toolbox. A well-designed
simulator makes it possible to rapidly test algorithms, design robots, perform regression
testing, and train Al system using realistic scenarios. Gazebo offers the ability to accurately
and efficiently simulate populations of robots in complex indoor and outdoor
environments. There are physics engine, high-quality graphics, and convenient
programmatic and graphical interfaces (Why Gazebo?, n.d.).

TurtleBot3 supports development environment that can be programmed and
developed with a virtual robot in the simulation. There are two development
environments to do this, one is using fake node and 3D visualization tool RViz and the
other is using the 3D robot simulator Gazebo. The fake node method is suitable for testing
with the robot model and movement, SLAM and navigation, which can use sensors such

as IMU, LDS, and camera in the simulation (TurtleBot3 simulation, n.d.).

Research methodology

From the evaluating of alternatives, the concept design consi

First, input data of robot position from LiDAR. Then, it seag
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through network, deep reinforcement learning for making a decision to the next position.
This process worked on Robotic Operating System (ROS); the simulation of mobile robot
has shown in Gazebo. The robot will also learn to avoid obstacles and reach the goal in
Gazebo. Afterwards, we will get the fit parameter of robot learning for testing in real

world. The conceptual design of process is shown in Figure 5.

Input data from LiDAR

A4

Deep Reinforcement Learning model

A4

Robotic Operating System (ROS)

A

Simulation in Gazebo

A

Real test

Figure 5 Conceptual design

Setup and implementation
The equipment of mobile robot is chosen to attach with a robot, is shown in
Ficure 6 and the proposed trajectory planer is operating according to his flow chart

presented in figure 7.

MsUS=3U3BINISIA=UNAUaWAIIUNIIIEINISS:AUBIT asiA 5 The 5 UTCC National Conference U f I C C
June 8, 2021 University of the Thai Chamber of Commerce




Input data from Lidar

Y

Neural Network
A

Output (Action) Robot

v
Q-Table (Q-value) [* Collision Detection

Figure 6 Trajectory planner structure

Start new iteration

v

» Receive data from Lidar

A 4

Calculate the current state Q-value <

Yes
Safe state

No

Neural Network Change orientation

(Choose action) and move forward

No

Collision?

Y

Reach goal?

Yes
No

Last iteration?

No Reach goal /

epoch limit?

Yes

Figure 7 Trajectory planner algorithm flow chart
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Mathematical models

Mathematical model of the obstacle avoidance mobile robot is design for using
in making decision of the movement of robot to the desired target. Therefore, designing
mathematical model for programming is separated into 2 parts, Deep Q-Network for
robot’s movement decision making and reward function when robot choose some action.

Deep Q-Network

This research is to train a DON agent that learns an optimal policy to navigate the
robot from point a to point b with minimum effort. Algorithm is that a simplified update

rule is used:

Q7 (st,a:) +— Q™ (51, a¢) + Tmfow(St+11a)

State

State is an observation of environment and describes the current situation. This
is vital for the agent because it would calculate and act depending on the state. The
state size is 26 and 24 LDS (Laser Distance Sensor) values. The other two are distances

to goal, and angle to goal. A mathematical approach for this is as follow:
State = LDS (8 values) + Distance (1) + Angle (1)

LDS denotes the (24) values that the lidar sensor emits. Distance represents the
distance to the goal and Angle is the angle between the robot heading and vector to the
goal.

Action (Degrees of Freedom)

The robot has three actions which can act on depending on the type of state. In
here, the robot has a fixed linear velocity of 0.15m/s and the angular velocity is

determined by action, shown in figure 8.
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Forward

0 > 2
NPRRNAY

Right
Figure 8 Three actions of robot

Table 1 Actions and angular velocity of robot

Action Angular velocity (rad/s)
0 -1.5
1 0
2 1.5

Action: [0, 1, 2] with angular velocity of robot is shown in Table 1.

Reward Function

When turtlebot3 takes an action in a state, it receives a reward. The reward design
is very important for learning. A reward can be positive or negative. When turtlebot3 gets
to the goal, it gets big positive reward. When turtlebot3 collides with an obstacle, it gets
big negative reward.

Before giving the reward function, one environment state is classified into four
different properties, called the state property:

- Safe State (SS): a state where the robot has a low or no possibility of collision

with surrounding obstacles.

- Non-Safe State (NS): a state where the robot has a high possibili

with some obstacles in the environment.
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- Winning State (WS): one of the terminate states when the robot reaches its
goal.
- Failure State (FS): one of the terminate states when the robot collides with

obstacles.

Experiment Setup

Installation

Install Tensorflow, Keras and Anaconda with Ubuntu 16.04 and ROS kinetic,
Anaconda 5.2 for Python 2.7 version. To use ROS and Anaconda together, we must
additionally install ROS dependency packages. After that, install Keras, is a high-level
neural networks API, written in Python and capable of running on top of TensorFlow. And
then, install Machine Learning packages.

Set State

sample = 360 degrees, modify it to 8 regions (G,, n  [1,8]) are shown in figure 9

and figure 10 show the distances between TurtleBot3 (robot) and obstacle and
another one between the robot and goal determine the transition state of the robot.
A
G3 G2
G4 G1
G5 G8
G6 | G7
v

Figure 9 Eight regions for each angle
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Goal

»
»

A
v

Obstacle

v

Figure 10 Main distance for determining TurtleBot3 state

Set Reward

The reward function is exactly as the one proposed by Jaradat (2011):

2,8S - WS
1,NS - SS

O,NS - NS, dRo(n + 1) > dRo(n)
—1,SS - NS

—1,NS - NS, dRo(n + 1) < dRo(n)
—2,NS - FS

4 Stages of environment

Figure 11 show the stages of each environment, Stage 1 is a 4x4 map with no
obstacles, stage 2 is a 4x4 map with four cylinders of static obstacles, stage 3 is a 4x4
map with four cylinders of moving obstacles and stage 4 is a 5x5 map with walls and two

cylinders of moving obstacles.
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Stage 1 (No Obstacle) Stage 2 (Static Obstacle)

Stage 3 (Moving Obstacle) Stage 4 (Combination Obstacle)

Figure 11 Four stages of environment
Note. From https://emanual.robotis.com/docs/en/platform/turtlebot3/machine

learning/#set-parameters

Conclusion
This research aims to solve the problem of mobile robot using wheels can avoid

obstacles by deep reinforcement learning. We have developed the obstacle avoidance

system by using deep reinforcement learning (Deep Q-Network), it is a type of
reinforcement learning. ROS (Robot Operating System) is an important component of
building robotic control systems. In addition, the learning system will be created in

simulation environment model, Gazebo. In the part of simulation, the robot is designed.

to provide the training and testing environments, in order to solve the problem o
for the robot’s intelligent decisions in a complicated dynamic environgs

tested it in stage 1, the robot learn about moving when
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2, the robot learn about moving and trying to avoid static obstacle, we found that in this
stage, the robot cannot avoid obstacle. The robot move from starting point and hit
obstacles many times and then it moves repeatedly around obstacles. So we have to
provide more training and testing and find out the suitable parameter for this research.
After we get suitable parameter and result from simulation for decision making of robot

control system, we will apply to real robots in real environment.
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